Pearson Edexcel

Mark Scheme (Results)

January 2019

Pearson Edexcel International GCSE
In Physics (4PH0) Paper 2P

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2019
Publications Code 4PH0_2P_1901_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	gravitational (force);	allow gravity, gravitational pull, gravity pull ignore centripetal force reject gravitational potential, gravitational field strength	1
(b) (i) (ii)	any 1 correct label; all three correct;; time period of moon is shorter; idea that it travels a shorter distance / orbital radius is smaller;	allow Earth for planet allow star for Sun however expressed allow RA ignore 'moon travels faster' allow RA allow 'orbit of moon is smaller' ignore unqualified 'smaller circumference', ‘smaller radius/diameter'	2

Question number	Answer			Notes	Marks
2 (a)	a quantity with magnitude / size; (and) direction;			allow 'amount' for magnitude	2
(b)				reject any row with two ticks	3
	Quantity	Scalar	Vector		
	energy	\checkmark			
	speed	\checkmark			
	weight		\checkmark		
	acceleration		\checkmark		
	charge	\checkmark			
	moment		\checkmark		
	one or two correct ticks = 1 mark; three or four correct ticks = 2 marks;; all five correct ticks = 3 marks;;;				

Question number	Answer	Notes	Marks
3 (a)	B;	reject if more than one letter given reject if more than one letter given	2
(b)	substitution; rearrangement; evaluation; e.g. $380000=m \times 10 \times 45$ $(m=) 380000 /(10 \times 45)$ $(m=) 840(\mathrm{~kg})$	-1 for POT error	3

Question number	Answer	Notes	Marks
4 (a) (i) (ii) (iii)	$0.717 ;$ N; density = mass / volume; substitution OR rearrangement; evaluation; e.g. $8960=0.0717 / V$ OR $V=m / \rho$ $(\mathrm{V}=) 8.00 \times 10^{-6}\left(\mathrm{~m}^{3}\right)$	allow 0.7, 0.72, 0.70, 0.703... allow newton(s) condone n marks are independent allow symbols, e.g. $\rho=m / V, d=m / V$ or rearrangements -1 for POT error allow 8×10^{-6}, 8.002... $\times 10^{-6}$ answer does not need to be in standard form e.g. $0.000008\left(\mathrm{~m}^{3}\right)$ gets both marks	2 1 2
(b) (i) (ii)	bar chart / bar graph; steel is more dense; OR granite is less dense; steel is (approximately) $3 \times$ denser;	accept column graph condone histogram allow ratio of densities in range 2.8-3.1 ignore comparison of masses accept correct values of both densities for 2 marks e.g. steel $=7900 \mathrm{~kg} / \mathrm{m}^{3}$ granite $=2700 \mathrm{~kg} / \mathrm{m}^{3}$ tolerance ± 100 on each	1 2

Question number	Answer	Notes	Marks
5 (a)	MP1. measure time for a set distance; MP2. realistic values suggested for experiment to work; MP3. suitable measuring instrument named; MP4. further detail of setup; MP5. idea of repeats and average; MP6. reference to speed = distance / time;	allow measuring wavelength for a known frequency e.g. - greater than 1 m for microphones and oscilloscope method - greater than 100 m for seeing and hearing a clap method - greater than 50 m for wall and echo method - wavelength measured greater than 10 cm e.g. stop clock, stopwatch, ruler, tape measure, oscilloscope e.g. - two microphones on bench connected to oscilloscope - start timing when see a clap and stop when hear it - clap by wall and time how long for clap to come back - moving a microphone until waveforms line up on oscilloscope allow speed $=$ frequency \times wavelength	6

\begin{tabular}{|c|c|c|c|}
\hline \& \& \& \\
\hline \begin{tabular}{l}
(b) \\
(i)
\end{tabular} \& straight line of best fit drawn within indicated area; \& line does not need to be extended beyond data range for this mark \& 1 \\
\hline \begin{tabular}{l}
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
line of best fit extended as a straight line to \(20^{\circ} \mathrm{C}\); student's own value from graph \(\pm\) half a square; \\
speed (of sound) decreases (with temperature); \\
so wavelength decreases (with temperature);
\end{tabular} \& \begin{tabular}{l}
condone straight line extension of dot to dot line allow range of 342-345 (m/s) allow ecf from line drawn in (i) \\
allow 'sound slows down' ignore references to particle speed allow \(\lambda\) is smaller
\end{tabular} \& 2

2

\hline
\end{tabular}

Question number	Answer	Notes	Marks	
6	any two advantages: MP1. idea that fuel will last for a long time; MP2. high energy density of fuel; MP3. no CO2 emissions / no greenhouse gases / does not contribute to global warming / does not produce acid rain; MP4. reliable electricity output / does not depend on weather; any two disadvantages: MP5. waste products are radioactive / difficult to dispose of; MP6. chance of nuclear accident; MP7. high security risk; MP8. high construction / decommissioning cost;	ignore idea that fuel is limitless / will not run out allow idea that a small amount of fuel yields a lot of energy allow idea that it can supply electricity / energy constantly ignore unqualified 'it is reliable' e.g. nuclear meltdown, risk from tsunamis etc. ignore unqualified 'it is expensive'	4	exp

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 7 (a) \& fewer turns on the secondary; \& allow RA \& 1 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
word equation or
\[
V_{p} I_{p}=V_{s} l_{s} \text {; }
\] \\
correct equation substituted OR rearranged; evaluation; \\
e.g.
\[
\begin{aligned}
\& 230 \times I_{p}=5.5 \times 1.0 \quad \text { OR } \quad I_{p}=V_{s} I_{s} / V_{p} \\
\& \left(I_{p}=0.024(A)\right.
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
Vp/Vs = Is/lp \\
or \\
\(\mathrm{Vs} / \mathrm{Vp}=\mathrm{Ip} / \mathrm{ls}\) \\
or
\[
I_{1} V_{1}=I_{2} V_{2}
\] \\
allow 0.0239...(A) allow 0.02 (A) if supported by working
\end{tabular} \& 1

2

\hline (c) \& | any two from: |
| :--- |
| MP1. input power increases; |
| MP2. (input) voltage remains the same; |
| MP3. (input) current increases; | \& allow energy for power \& 2

\hline
\end{tabular}

Question number	Answer	Notes	Marks
8 (a)	weight of crane arm;	allow weight of arm, weight of crane	1
(b) (i) (ii)	moment $=$ force \times (perpendicular) distance (from pivot); substitution; evaluation; e.g. (moment $=) 150000 \times 1.2$ (moment =) $180000(\mathrm{Nm})$	allow symbols, e.g. $M=F \times d$ or rearrangements -1 for POT error	2
(c) (i) (ii)	(at equilibrium) (sum of) clockwise moment(s) = (sum of) anticlockwise moment(s); correct expression for moment of weight of rock or weight of crane arm seen; correct use of principle of moments; evaluation; e.g. $\begin{aligned} & F \times 6.8 \text { OR } 18(000) \times 2.8 \\ & 180000=(18000 \times 2.8)+(F \times 6.8) \\ & F=19000(N) \end{aligned}$	allow in correct symbols allow ecf from (b) -1 for POT error 19058.8...(N)	1 3

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
9 (a) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
momentum = mass \(\times\) velocity; \\
substitution and evaluation; e.g.
\[
\begin{aligned}
\& (p=) 0.039 \times 0.56 \\
\& (p=) 0.022(\mathrm{kgm} / \mathrm{s})
\end{aligned}
\] \\
use of conservation of momentum; \\
evaluation of total mass; evaluation of mass of truck; \\
e.g. \\
\(0.022=m \times 0.26\) \\
total mass \(=0.084\) \\
mass of truck \(=(0.084-0.039=) 0.045(\mathrm{~kg})\)
\end{tabular} \& \begin{tabular}{l}
allow rearrangements and standard symbols e.g. \(p=m \times v\) reject \(m\) for momentum \\
0.02184 (kgm/s) allow \(0.02(\mathrm{kgm} / \mathrm{s})\) if supported by working \\
allow 'momentum before = momentum after' seen anywhere can also be implied from calculation \\
allow ecf from (ii) allow 0.0846...(kg) allow 0.0456...(kg)
\end{tabular} \& 1

1

3

\hline (b) \& total mass (of system) is now greater; total momentum is the same as before; velocity will be lower than before; \& | allow "momentum is conserved" |
| :--- |
| calculation of new velocity $=0.169 \ldots \mathrm{~m} / \mathrm{s}$ scores all 3 marks | \& 3

\hline
\end{tabular}

